Filamin is essential for shedding of the transmembrane serine protease, epithin.
نویسندگان
چکیده
Epithin is a type II transmembrane serine protease that exists in a soluble and membrane-bound form. Shedding is thought to be important in regulating its action, but little is known regarding the intracellular events that trigger such shedding. Here, we show that phorbol myristate acetate (PMA) causes the release of epithin. It also causes accumulation of the protein at the site of cell-cell contacts, and this accumulation is dependent on the formation of cortical actin. In addition, we have identified the actin-binding protein, filamin, as the linker between epithin and the actin cytoskeleton. The interaction of epithin and filamin was enhanced by PMA, and epithin was not released from filamin-deficient M2 cells. We also show that the release of epithin does not require its own activity and is blocked by a metalloprotease inhibitor, GM6001. These results show that filamin has an essential role in shedding by linking epithin to the as yet unidentified metalloprotease-shedding enzyme(s).
منابع مشابه
VASCULAR BIOLOGY Epithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration
Epithin/PRSS14, a type II transmembrane serine protease, is involved in normal epithelial development and tumor progression. Here we report, as an interacting substrate of epithin, a receptor tyrosine kinase Tie2 that is well known for important roles in the vessel stability. Epithin interacts with and degrades the Tie2 extracellular portion that contains the ligand-binding domain. Epithin is l...
متن کاملEpithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration.
Epithin/PRSS14, a type II transmembrane serine protease, is involved in normal epithelial development and tumor progression. Here we report, as an interacting substrate of epithin, a receptor tyrosine kinase Tie2 that is well known for important roles in the vessel stability. Epithin interacts with and degrades the Tie2 extracellular portion that contains the ligand-binding domain. Epithin is l...
متن کاملMatriptase/epithin participates in mammary epithelial cell growth and morphogenesis through HGF activation
The epithelial-derived, type II transmembrane serine protease matriptase, the mouse homologue of which is epithin, has been shown to be involved in epidermal differentiation, hair formation, and thymus function. We show in this study that epithin/matriptase (Epi/MTP) plays a significant role in mammary epithelial cell growth and morphogenesis. Epi/MTP is expressed at low level in the mouse mamm...
متن کاملMatriptase shedding is closely coupled with matriptase zymogen activation and requires de novo proteolytic cleavage likely involving its own activity
The type 2 transmembrane serine protease matriptase is involved in many pathophysiological processes probably via its enzymatic activity, which depends on the dynamic relationship between zymogen activation and protease inhibition. Matriptase shedding can prolong the life of enzymatically active matriptase and increase accessibility to substrates. We show here that matriptase shedding occurs vi...
متن کاملZymogen activation, inhibition, and ectodomain shedding of matriptase.
Matriptase is a member of an expanding group of type II transmembrane serine proteases. Recently, much has been learned about the biochemistry, cellular biology, normal tissue physiology, and human pathology of this protease, and of its inhibitor, termed the hepatocyte growth factor inhibitor-1 (HAI-1). This review examines the recent literature that has characterized the regulation of matripta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 6 11 شماره
صفحات -
تاریخ انتشار 2005